

EXAMINATIONS COUNCIL OF ESWATINI Eswatini General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		
PHYSICAL SCI	PHYSICAL SCIENCE 6888/02			
Paper 2 Structured Questions October/November 20			tober/November 2019	
			1 hour 15 minutes	
Candidates answer on the Question Paper. No Additional Materials are required.				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and candidate name on the spaces provided.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams, graphs, tables or rough working.

Do **not** use staples, paper clips, highlighters, glue or correction fluid.

Do **not** write on the barcode.

Answer all questions.

You may use an electronic calculator.

A copy of the Periodic Table is printed on page 17.

You may lose marks if you do not show your working or if you do not use appropriate units.

The number of marks is given in brackets [] at the end of each question or part question.


For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

This document consists of 17 printed pages and 3 blank pages.

© ECESWA 2019 [Turn over

1 Fig. 1.1 shows a liquid-in-glass thermometer being calibrated against water for reading temperature in Celsius.

Only the lower and upper fixed points are labelled.

		Fig. 1.1	
(a)	Stat	te the value of the	
	(i)	lower fixed point	[1]
	(ii)	upper fixed point	[1]
(b)		scribe how the thermometer can be calibrated using the lower and upper d points.	
			[2]
(c)	The	liquid-in-glass thermometer in Fig. 1.1 is placed in warm water.	
	A si	milar thermometer with a larger bulb is placed in the same warm water.	
	(i)	Describe how the larger bulb affects sensitivity of the thermometer.	
			[1]
	(ii)	Suggest how the increase in the size of the bulb affects the scale of the thermometer.	
			[4]

2 Aluminium is extracted from its ore by electrolysis.

Fig. 2.1 shows the electrolytic cell used in the extraction of aluminium.

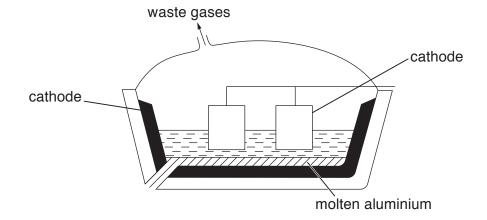


Fig. 2.1

(a)	Name the main ore of aluminium.	
		[1]
(b)	Label with the letter A , on Fig. 2.1, the electrode where oxygen gas is produced.	[1]
(c)	Explain why aluminium cannot be extracted by reduction with carbon.	
		[2]
(d)	State two properties of aluminium that make it suitable for the construction of aircraft bodies.	t
	1	
	2	[2]

Cel	ell phones transmit information through radio waves.		
Rac	Radio waves are part of the electromagnetic spectrum.		
(a)	State the speed of the radio waves in a vacuum.		
	[1]		
(b)	Jabu, who is in Eswatini, receives a call on her cell phone from her friend in Australia.		
	Calculate the frequency of the radio waves if the wavelength is 0.2 km		
	Hz [3]		
(c)	Explain why x-rays are more harmful than radio waves.		
	[2]		

3

4 Table 4.1 shows the number of sub-atomic particles of atoms **X**, **Y** and **Z**.

Table 4.1

atom	number of protons	number of electrons	number of neutrons
X	8	8	8
Υ	11	11	12
Z	8	8	9

(a)	(i)	Identify X using the Periodic Table on page 17.	
			[1]
	(ii)	Explain why Z is an isotope of X .	
			[2]
(b)	Нус	Irogen reacts with ${\bf X}$ to form a covalent compound with the formula, ${\bf H}_2{\bf X}$.	
	Dra	w a 'dot-and-cross' diagram for the covalent compound, $H_2\mathbf{X}$.	
			[2]
(c)	Y is	an atom of sodium, Na.	
	X re	eacts with sodium to form the ionic compound, Na ₂ X .	
		lain the difference in the melting points of the ionic compound, $\mathrm{Na_2}\mathbf{X}$, and the alent compound, $\mathrm{H_2}\mathbf{X}$.	
			[2]

(d) Sodium is a Group I element while copper is a transition element.

Complete Table 4.2 by stating the colour and oxidation state of sodium and copper compounds.

Table 4.2

compound	colour	oxidation state
sodium compounds	white	
copper compounds		

[3]

5 Fig. 5.1 shows a boy juggling with two marbles, **B** and **C**, of different diameters.

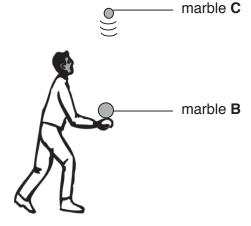


Fig. 5.1

Marble **B** is bigger than marble **C**.

- (a) Marble B, of mass 200 g, leaves the hand at a speed of 3 m/s.
 - (i) Calculate the maximum kinetic energy that marble **B** gains during its motion.

[2]

(ii) Calculate the maximum height reached by marble **B**.

[2	2]
----	----

(iii) State one assumption made when calculating maximum height in (a) (ii).

(b)	Marble C , mass of 110 g, leaves the hand of the boy with the same speed of 3 m/s.
	Compare the height reached by marble ${\bf C}$ to the height reached by marble ${\bf B}$.
	Give a reason for your answer.
	comparison
	reason
	[2]

6 Fig. 6.1 is a flow diagram.

It shows methods for preparing two salts, copper(II) sulfate and barium sulfate.

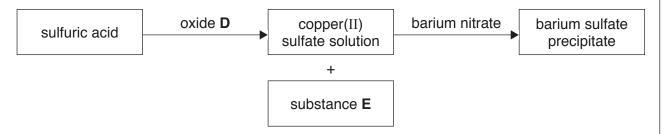


Fig. 6.1

(a)	Identify oxide D [1]
(b)	Name the method used to prepare barium sulfate in Fig. 6.1.
	[1]
(c)	Identify substance E.
	[1]
(d)	Sulfur dioxide is another oxide.
	Classify the type of oxide for sulfur dioxide.
	Give a reason for your answer.
	classification
	reason
	[0]

7 Fig. 7.1 shows a circuit consisting of 3 resistors, 3 ammeters and 2 cells.

Resistor 1 (R_1) is 2Ω

Resistor 2 (R_2) is 3 Ω

Resistor 3 (R_3) is 6Ω

Ammeter A_3 reading is 1.7A.

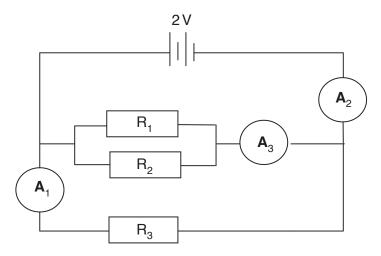


Fig. 7.1

(a) State the potential difference across R_3 .

 V [1]

- (b) Calculate
 - (i) the current through ammeter A_1 ,

..... A [2]

(ii) the charge passing through ${\rm R_3}$ in 10 seconds,

..... C [2]

(iii)	the combined resistance of R ₁ and R ₂ ,	
		Ω [2]
		A [1]

8	(a)		Calcium carbonate, $CaCO_3$, breaks down to form calcium oxide and carbon dioxide when heated.								
		Nan	ne the type of reaction involved when calcium carbonate is heated.								
	(b)	20 g	of calcium carbonate is heated in a kiln to form calcium oxide and carbon dioxide.								
		The	equation for the reaction is								
		CaC	$CO_3 \longrightarrow CaO + CO_2$								
		(i)	Calculate the relative formula mass, RFM, of calcium carbonate, ${\rm CaCO}_3$.								
			[A _r : Ca: 40; C: 12; O: 16]								
			[2]								
		(ii)	Calculate the number of moles of calcium oxide that are produced when the 20 g calcium carbonate, ${\rm CaCO_3}$ is heated in the kiln.								
			moles [3]								
		(iii)	Find the number of moles of carbon dioxide gas produced when 20 g of calcium carbonate is heated in the kiln.								
			moles [1]								

	(iv)	The volume of carbon dioxide produced when 20 g of calcium carbonate is heated in the kiln is measured.
		Calculate the volume of this gas at room temperature and pressure.
		[Use the molar gas volume as 24 dm ³ at r.t.p.]
		dm³ [2]
(c)	Des	cribe the use of calcium carbonate in
	(i)	the manufacture of glass,
		[1]
	(ii)	the extraction of iron.
		[2]

9 A power station generates 21 MW, 25 000 V of electricity.

The electricity is transmitted to a transformer in a nearby sub-station.

Fig. 9.1 shows the transformer at the sub-station.

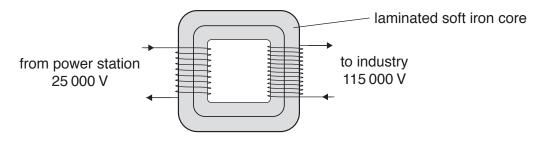


Fig. 9.1

	3
(a)	State the type of transformer shown in Fig. 9.1.
	[1]
(b)	State the purpose of the high voltage transmission of electricity.
	[1]
(c)	Describe how the transformer converts one input value of voltage to a different output value.
	[3]
(d)	Calculate the output current in the transformer in Fig. 9.1.
	[2]

10 Fig. 10.1 shows processes used to manufacture ethanol.

	glucose	yeast	ethanol	process F	ethene	
(a)	Name the c	onstituent in yeast t				
(b)	In process I	F, steam is added to				
(c)		he second member ructure of the fourth	of the alcohol he	-		[1]
(d)	Describe the	e formation of ethan	noic acid using a	ıtmospheric oxygen.		[2]

- 11 The nuclide radon-222 is found to emit β particles to form a new nuclide.
 - (a) Complete the equation to show the new nuclide after the radon-222 has undergone ${f \beta}$ decay. Write the new nuclide in the boxes.

(You may use the Periodic Table on page 17).

$$\frac{222}{86}Rn \to \Box\Box + \frac{0}{-1}\beta$$

(b)	Explain why ${\boldsymbol{\beta}}$ particles are deflected when they pass through a magnetic field.	
		. [2]
(c)	State one method of storing the radon-222 nuclide safely.	
		. [1]
(d)	Radon has a half-life of 4 days.	
	A 30 g sample of radon is left to decay for 16 days.	
	Calculate the amount of the sample remaining after the 16 days.	

DATA SHEET
The Periodic Table of the Elements

	_		*					_		17	<u> </u>	1			
	Key		* 58–7 † 90–1	223 Fr Francium 87	Caesium 55	133	Rubidium	ה מ	Potassium	⊼ ፡፡	23 Na Sodium	7 Lithium		_	
ь	×	а	1 La 03 /	88	56		ω	_	 >>		- = -	4			
Ь			nthanc	226 Ra Radium	Barium	137	Strontium	- 1		ဂ ္ဂ	24 Mg Magnesium	9 Be		=	
b = atomic (proton) number	X = atomic symbol	a = relative atomic mass	* 58–71 Lanthanoid series † 90–103 Actinoid series	227 AC Actinium †	Lanthanum 57 *	139	Yttrium	- 1	Scandium	ာ					
	<u>60</u>	nic mass			Hafnium 72	178	Zirconium		Titanium	1 48					
Thorium 90	Ŧ	232	140 Ce Cerium 58		Ta Tantalum 73	181	Niobium		Vanadium 23	< 51					
Protactinium 91	Pa	231	141 Pr Praseodymium 59		W Tungsten 74	184	Mo Molybdenum	90	Chromium 24	೧ %					
Uranium 92	_	238	Neodymium		Rhenium	186	Tc Technetium	0	Manganese 25	55 Mn					
Neptunium 93	Νþ	237	147 Pm Promethium 61		Osmium 76	190	Ruthenium	- 1	lron	TI 56			1 Hydrogen		
Plutonium 94	Pu	244	150 Sm Samarium		Ir Iridium	192	Rhodium	- 1	Cobalt 27	င					Group
Americium 95	Am	243	152 Eu Europium 63		Platinum 78	195	Palladium	- 1	Nickel	Z. 59					duc
Curium 96	Cm	247	157 Gd Gadolinium 64		Au Gold	197	Ag Silver		Copper	<u>۾</u>					
Berkelium 97	BK	247	159 Tb Terbium 65		Hg Mercury 80	201	Cadmium	- 1	Zinc 30	Z _S					
Californium 98	Çţ	251	163 Dy Dysprosium 66		T/ Thallium	204	Indium	- 1	Gallium	ှ	27 A <i>l</i> Aluminium	5 Boron		=	
Einsteinium 99	Es	252	165 Ho Holmium		Pb Lead	207	50 Tin	110	Germanium	က္ခ ရ	28 Silicon	12 Carbon		 	
Fermium 100	Fm	257	167 Fr Erbium		Bismuth 83	209	Sb Antimony	- 1	Arsenic	75 As	31 Phosphorus 15	Nitrogen		<	
Mendelevium 101	Md	258	169 Tm Thullium 69		Polonium 84	209	Tellurium		Selenium 34	79 Se	32 S Sulfur	16 Oxygen		<	
Nobelium 102	No	259	173 Yb Ytterbium		At Astatine 85	210	lodine	- 1	Bromine	₩ 8	35.5 C <i>l</i> Chlorine	19 Fluorine		VII	
Lawrencium 103	Ļ	260	175 Lu Lutetium		Radon 86	222	Xenon	- 1	Krypton	2 Z	40 Ar Argon	20 Ne on	Helium 2	0	
SWA 2019 6888/02/O/N/2019															

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

© ECESWA 2019 6888/02/O/N/2019